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ABSTRACT 
There is a growing interest in the optimization of vehicle fleets 
management in urban environments. However, limited attention 
has been paid to the integrated optimization of electric taxi fleets 
accounting for different operations as well as complex spatiotem
poral demand dynamics. To this end, this study develops a real- 
time recommendation framework based on deep reinforcement 
learning (DRL) for electric taxis (E-taxis) to improve their system 
performance with explicit modeling of multiple vehicle actions 
and varying travel demand across space and over time. 
Spatiotemporal patterns of urban taxi travels are extracted from 
large-scale taxi trajectories. Spatiotemporal strategies are pro
posed to coordinate E-taxis’ repositioning and recharging with 
optimized recommendation for next destinations and charging 
stations. A spatiotemporal double deep Q-network (ST-DDQN) is 
embedded in the DRL framework to maximize the daily profit. A 
prototype real-time recommendation system for E-taxis is imple
mented for the decision-making of E-taxi drivers and sensitivity 
analyses are carried out. The experimental results in Shenzhen, 
China suggest that the proposed framework could improve the 
overall performance. This study will benefit the promotion of con
nected E-taxis and the development of clean and smart 
transportation.
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1. Introduction

Transportation is one of the main sources of fossil energy consumption and carbon 
emissions (Stocker 2014). In recent years, the electrification of transportation has 
become an international consensus to tackle global warming. The taxi industry, an 
important component of urban transportation, is receiving increasing attention for 
adopting environmental-friendly and increasingly efficient electric vehicles. With the 
advancement of vehicle technologies, Electric taxis (E-taxis) provide a promising alter
native for efficient and energy-saving urban mobility services (Abduljabbar et al. 2019, 
Veres and Moussa 2020), relieving traffic congestion and reducing carbon emissions 
(Vazifeh et al. 2018), which improves the sustainability of urban systems. Many cities 
worldwide have planned or implemented taxi electrification schemes. Several cities 
and regions are now close to the ambitious goal of fully electrifying the taxi fleets, 
such as Beijing, London, and Shenzhen. For example, London realized the target of 
9000 plug-in hybrid taxis on the road by 2020 (Hall et al. 2018). Notably, in 2019, 
Shenzhen became the first city in the world with a pure E-taxi fleet. It is widely antici
pated that, through the electrification of transportation services, a reduction in energy 
consumption and pollution in urban areas could be achieved, leading to more sustain
able and efficient urban transportation.

However, at present, the shortcomings of electric vehicles (EVs) are dissuading driv
ers and operators from adopting E-taxis. Compared with conventional internal com
bustion engine (ICE) vehicles, E-taxis have shorter driving ranges largely due to 
insufficient battery capacity (Kempton 2016, Tu et al. 2019, 2021). And limited by cur
rent charging technologies, E-taxis usually take hours to fully recharge, which is signifi
cantly longer than the time for refueling (Tu et al. 2021). These constraints reduce the 
on-road service time of E-taxis and consequently decrease the income of taxi drivers 
as well as the level of service of the system. These disadvantages are also amplified by 
inadequate charging facilities and low gasoline prices, thus hampering the incentive 
for adopting E-taxis. To disengage from such a predicament, it is necessary to enhance 
the viability and efficiency of E-taxis. The technological advancements of vehicular 
automation and connectedness exhibit a promising lead in tackling these issues. 
Through coordinated operations and intelligent vehicle control, the centralized man
agement of potentially automated fleets could substantially enhance the system effi
ciency, safety and environmental sustainability. While fully automated vehicle fleets 
are still in development and not yet ready for the market, centrally managed service 
fleets have hit the road for some time now, providing on-demand services to millions 
of users worldwide (Xu et al. 2018). Under these schemes, how to better plan taxi 
operations would immensely affect their operational and economic efficiency, and 
thus influence the adoption of E-taxis and the performance of urban transportation.

The rise of information and communication technology (ICT) and intelligent trans
portation systems (ITS) has brought about a massive amount of data that reflect urban 
mobility and the functioning of the urban systems. Big data contain rich information 
on spatial dynamics and can yield new insights for addressing urban problems (Welch 
and Widita 2019) and facilitate research in urban informatics and spatial optimizations. 
For instance, large-scale taxi trajectories contain rich spatiotemporal information of 
urban travels, such as the distribution of taxi demand and travel distance, and the 
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temporal rhythm of demands (Zheng et al. 2014). Based on these spatiotemporal 
knowledges, many studies have been conducted to improve the viability of E-taxis by 
optimizing different aspects of taxi operation, such as optimally locating charging sta
tions based on spatiotemporal charging demand, balancing charging station utilization 
to reduce social cost, optimizing E-taxi recharging schedule, and recommending more 
profitable routes (Tu et al. 2021). On the other hand, various optimization methods 
have been proposed aiming at improving the efficiency of electric fleets under differ
ent service contexts such as carsharing (Folkestad et al. 2020) and on-demand shared 
automated EVs (Dean et al. 2022), typically with mathematical programming. In terms 
of the optimization of E-taxi fleets, most existing studies only focus on certain opera
tions such as charging and vehicle routing. However, the daily cycle of an E-taxi is 
highly complex with many different operations ranging from picking up and delivering 
passengers and cruising to recharging and waiting in place for the next orders. At the 
same time, the actions and behaviors of E-taxis have cascading effects on their follow
ing operations (Tseng et al. 2019, Tu et al. 2021). For example, recharging during peak 
hours may result in a loss of orders and thus lower daily profit. Serving a passenger to 
a faraway destination can generate higher short-term income, but may lead to long 
cruising without orders. Therefore, it is essential to consider the long-term effect of 
different actions of E-taxis. Some existing studies focused on the decision-making pro
cess of E-taxis regarding cruising and recharging actions based on the expected 
income. But their approach cannot be well extended to a more practical scenario, 
where the waiting and repositioning of E-taxis also influences their profitability.

This study develops a real-time recommendation framework to improve the effi
ciency of the E-taxi operations in a hypothetical connected and centralized system 
and increase the profit of E-taxi drivers considering the dynamic patterns of travel 
demand for taxis and the various courses of action by E-taxis including selecting and 
serving orders, repositioning via cruising, recharging at charging stations, and main
taining static in place. A reinforcement learning (RL) approach is applied to optimize 
the actions of E-taxis, taking into account the spatiotemporal distributions of urban 
taxi travels extracted from massive taxi trajectories. Spatiotemporal strategies are for
mulated to coordinate E-taxis’ repositioning and recharging by providing near-optimal 
locations or charging stations as the next destinations. A spatiotemporal double deep 
Q-network (ST-DDQN) embedded in the RL framework is proposed to maximize the 
daily profit. A real-time recommendation prototype system for E-taxis is developed for 
the decision-making of E-taxis. The experimental results in Shenzhen, China suggest 
that the system prototype could significantly improve the performance of the E-taxi 
system compared to selected baselines. The contributions of this study are summar
ized as follows:

� Spatiotemporal patterns of taxi travels are identified from massive taxi trajectories 
and leveraged to improve the online recommendation for E-taxis.

� A RL-based integrated recommendation framework incorporating the discovery of spa
tiotemporal patterns is developed for online destination recommendation for E-taxis.

� Extensive experiments showcase the capability of the proposed framework to 
improve the performance of the system with sensitivity analyses revealing the 
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impact of different influential factors including battery capacity, charging speed, 
and fleet size.

� It also adds to the research on spatial planning and optimization by combining 
spatiotemporally rich information from big trajectory data and optimization of taxi 
operations to enhance the performance and sustainability of urban systems.

The remainder of the paper is organized as follows. Section 2 reviewed related lit
erature. Section 3 overviews the recommendation system and defines the problem. 
Section 4 describes the proposed real-time recommendation framework coupling spa
tiotemporal knowledge discovery and deep reinforcement learning. Section 5 reports 
the experimental results. Section 6 summarizes and discusses the main findings.

2. Literature review

2.1. Data mining and optimization with taxi trajectory

Vehicle trajectories acquired by global navigation satellite system (GNSS) or computer 
vision enable us to understanding city-wide human mobility patterns and improve 
urban travels with these patterns. Uncovering mobility patterns from massive vehicle 
trajectories has attracted much attention in relevant fields from urban computing 
(Zheng et al. 2014) to transportation (Zheng 2015). Based on origin-destination pairs 
or routes extracted from GNSS trajectories, a few studies have contributed to portray
ing urban mobility (Liu et al. 2015), revealing taxi travel patterns (Liu et al. 2010, Chen 
et al. 2021), and predicting travel demand (Castro et al. 2012). For example, Gong 
et al. (2016) inferred activity patterns based on Bayes’ theorem using taxi traces in 
Shanghai to estimate trip purposes with results similar to the survey data on the spa
tiotemporal characteristics of urban taxi travels. Xiong et al. (2023) extracted traffic 
congestions from raw taxi trajectories and revealed the spatiotemporal propagation 
patterns of traffic congestion using Dynamic Time Warping and directed acyclic 
graphs.

Many efforts have been made to improve the viability of E-taxis in different aspects, 
such as locating E-taxi charging stations (Tu et al. 2016, Meng et al. 2020), scheduling 
E-taxi recharging events, balancing charging stations utilization, and route recommen
dations. Tu et al. (2019) used the GPS trajectories of ride-hailing drivers in Beijing to 
investigate the extent to which EVs could satisfy the demand for ride-hailing services. 
Their results suggest long-range vehicles and more extensive coverage of charging 
facilities are essential for the success of EV-based ride-hailing.

Optimizing recharging activities can directly improve E-taxis’ efficiency with the 
more productive allocation of time for service. Considering the time-varying electricity 
cost, scheduling E-taxi fleets, or individual drivers’ recharging can also lower the daily 
recharging fee and thus increase the profitability of E-taxis. E-taxi drivers’ recharging 
choices tend to spatiotemporally aggregate around popular locations, e.g. shopping 
centers, airports, railway stations, which may induce excessive waiting. Coordinating E- 
taxis by providing them with suitable time slots and charging locations is found effect
ive to balance charging station utilization and reduce the average waiting time. Much 
attention has also been paid to route recommendation for taxis, which influences the 
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opportunities of finding passengers and the cost of cruising. Previous studies have 
developed route recommendation methods for ICE taxis with the objectives of maxi
mizing the probabilities to find clients (Wang et al. 2015, Kumar et al. 2018) or increas
ing the chance of serving more profitable trips (Qu et al. 2014). These results, 
however, were for ICE taxis and not directly transferable to the context of E-taxis.

On the other hand, the daily cycle for an E-taxi is highly complex with different 
operations, e.g. picking up and delivering passengers, recharging, waiting, and reposi
tioning, and one action might influence the performance in the following hours (Tu 
et al. 2021). For instance, recharging during peak hours may lead to longer waiting 
time for charging poles and thus shorter effective service hour later in the day. Such a 
cascading effect implies that smart E-taxi operation should not only consider the 
immediate benefit of an upcoming decision. Accounting for both routing and recharg
ing choices, Tseng et al. (2019) proposed a recursive method to maximize the 
expected net income of E-taxi driver’s sequential decisions. But their recharging strat
egy did not consider the potential waiting at the station. Tu et al. (2021) aimed at 
deciding on the best actions from repositioning and recharging based on the 
expected accumulative net revenue in the next hours. But both works left out the 
waiting and relocating behaviors of E-taxis, which were key to the cost-efficiency of 
the operation and the level of service in the form of waiting time reduction on the 
passenger side.

2.2. Reinforcement learning in transportation research

Reinforcement learning (RL) models learn from agents’ interactions with the environ
ment and gradually optimize agent decisions to maximize long-term rewards (Mnih 
et al. 2015). The main components of a reinforcement learning model include agents, 
environments, actions, states, and rewards. In essence, an agent takes an action and 
its current state changes in response. A reward from the environment is then gener
ated as positive or negative feedback for the action, e.g. the revenue in the context of 
E-taxis. Then, the RL model updates the reward evaluation and the conditional proba
bilities of taking actions given agents’ states, called the policy, based on the received 
reward. Through a series of trial-and-error processes, the RL model is able to identify 
the action with the maximum reward. Eventually, the agents can choose the best 
action in each decision step to obtain the maximum long-term benefit.

For its capability to handle complex interactions during the decision-making pro
cess, RL has been applied for the optimization of transportation operation and man
agement in many areas including signal control, energy management, and delivery 
system. In particular, previous studies have adopted reinforcement learning and dem
onstrated its performance in optimizing taxi and ridesharing operations (Gao et al. 
2018, Welch and Widita 2019, Wang et al. 2020, Singh et al. 2022, Liu et al. 2022, Xu 
et al. 2023). For example, Gao et al. (2018) utilized RL to estimate the optimal choices 
of ICE taxi drivers at different locations. Using the historical trajectories of taxis in 
Beijing, the experiment suggests that RL-based recommendation can effectively 
improve drivers’ profits. Verma et al. (2017), on the other hand, proposed a model to 
optimize the next destinations and improve taxi drivers’ revenue with real-world taxi 
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trajectory data. Jindal et al. (2018) developed a RL-based system for carpooling to 
maximize efficiency and reduce traffic congestion. With a Spatio-Temporal Neural 
Network model to predict trip time from GPS data, their model obtained promising 
results in comparison to a fixed baseline policy. Similarly, Holler et al. (2019) focused 
on fleet management for ridesharing platforms using RL models with different reward 
specifications. Yu and Gao (2022), on the other hand, developed a batch offline RL 
approach to solve the taxi routing problem with the objective of profit maximization. 
Their results suggest that the offline model is more efficient than the online Q-learn
ing method. However, the above-mentioned studies focused on ICE vehicles and the 
road routing decision. The complex interactions of taxis, passenger demands, and 
charging stations need to be accounted for in the RL framework to better optimize 
the operations of E-taxis.

In recent years, RL models have been applied to the optimization of operations and 
management involving EVs (Shi et al. 2020, Bogyrbayeva et al. 2022, Zhou et al. 2022). 
For instance, Shi et al. (2020) applied RL with by a decentralized learning and central
ized execution strategy to operate a centralized EV fleet. Their experiment results indi
cate better performance over the benchmark method in cost reduction. Bogyrbayeva 
et al. (2022) proposed a nighttime rebalancing system for EVs with shuttle vehicles 
and a central controller. They developed a policy gradient approach with recurrent 
neural networks to minimize the time cost of relocation. More recently, Zhou et al. 
(2022) proposed a graph-based spatio-temporal multi-agent reinforcement learning 
(GMIX) framework with soft time windows to dynamically plan for EV routes to serve 
passenger requests. Their experiments suggested that the proposed model outper
formed baseline methods on the selected metrics of service quality.

In summary, previous studies have focused on the optimization of taxi and rideshar
ing service through different approaches and with different targets. Recent studies 
have also increasingly utilized RL-based approach to improve the system performance 
and some have focused on the optimization of EV fleets. However, a comprehensive 
consideration of diverse actions and factors related to the operation of E-taxis is still 
lacking. In addition, the potential demands that the E-taxis may encounter after their 
actions would significantly affect the decision-making processes. Such spatiotemporally 
dynamic patterns of demands are often neglected in existing studies. The proposed 
approach in this study aims at the integrated modeling of the various types of E-taxi 
actions. we also account for the influence of the potential travel demands by mining 
from large-scale taxi trajectories to identify the spatiotemporal characteristics of taxi 
demands to facilitate the online recommendations for E-taxis.

3. Real-time recommendation system for E-taxis

3.1. System overview

The aim of this study is to provide an effective online recommendation system to 
improve the efficiency and the viability of E-taxi operations. Here, we hypothesize that 
the system of interest consists of an E-taxi fleet connected and managed by a central 
operator that resembles the current on-demand service providers and vehicles in the 
fleet operate fully cooperatively and undertake actions recommended by the central 
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operator. Hence, we present a real-time recommendation system that coordinates 
among taxis, passengers, and charging stations. An overview of the system workflow 
is shown in Figure 1. First, passengers submit their order requests via an online appli
cation and a cloud platform matches each request with the most suitable E-taxi. 
Considering the state of each idle E-taxi, the cloud platform will decide whether it 
should accept a request and pick up the passenger. If so, the taxi goes on to pick up 
and deliver the passenger to the destination. Otherwise, the taxi either remains on the 
road or goes to a charging station, depending on its remaining battery level. 
Simultaneously, charging stations keep updating and broadcasting real-time informa
tion, including the amount of charging piles and the number of vehicles in line. When 
the remaining battery level of an E-taxi cannot continue to sustain its operation, the 
cloud platform will recommend a charging station according to the queuing informa
tion. The idle E-taxis without assigned orders and sufficient battery, on the other 
hand, will reposition to nearby locations or wait in place for the next order based on 
the recommendation of the cloud platform. The maximum waiting time for passengers 
to be assigned a vehicle before cancellation is assumed to be 10 min.

The core of the recommendation system to coordinate and dispatch E-taxis is a 
deep reinforcement learning framework (ST-DDQN) incorporating the spatiotemporal 
patterns of taxi trips identified from massive trajectories. As mentioned, an important 
feature proposed in this study accounts for the potential travel demands at E-taxis’ 
next locations to maximize the probabilities of receiving new orders after current 
actions so that the level of service and the system efficiency are improved. Two strat
egies are proposed based on these spatiotemporal characteristics in order to increase 
effective on-road service time and reduce potential passengers’ waiting time. First, a 
cruising strategy is proposed to balance the spatial distribution of idle E-taxis and the 
travel demand. Second, a charging station recommendation strategy is formulated to 
reduce E-taxis’ waiting time at charging stations and increase their chance of matching 
to passenger orders after recharging as soon as possible.

Figure 1. The real-time recommendation system for E-taxis.
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3.2. Preliminary problem statements

In this section, we first introduce relevant concepts and definitions and then briefly 
describe the problem of interest.

Definition 1. A time step is a time instant at which all received orders to the operator 
are dispatched and the available E-taxis perform the recommended operations.  

At a time step, the cloud platform collects order requests and assigns them to E- 
taxis and the recommendation system decides if the order requests could be served. 
Requests that are not served will be dispatched at the next time step until they are 
finally served by E-taxis or cancelled by users. To capture the interactions among E- 
taxis, passenger demands, and charging services, at each time step, the input of the 
ST-DDQN model consists of an order request set O ¼ foig, an E-taxi set E ¼ fejg, and 
a charging station set C ¼ fckg: The output is the recommended decisions for E-taxis. 

Definition 2. A road junction l is the intersection point of roads in the network and rep-
resents the basic spatial unit of analysis.  

All locations of origins and destinations of the requests and locations of E-taxis and 
charging stations are geocoded to road junctions. The distance between two road 
junctions is calculated along the road network. 

Definition 3. An order request oi is represented by a triplet flp
i , ld

i , fig, where lp
i and ld

i 

represent the pick-up and drop-off locations of the trip, respectively, and fi is the fare for 
an E-taxi serving the order.  

A customer submits an order request oi to the system via a mobile device. All 
orders together represent the total demand. Upon receiving oi, the cloud platform dis-
patches it to an E-taxi within 10 min. If oi could not be assigned within that time, it is 
then regarded as an unrealized order request. 

Definition 4. An E-taxi ej is represented by a tuple flj, bjg, where lj is the E-taxi’s current 
location, and bj indicates the remaining battery level of the vehicle.  

The state of an E-taxi depends on its previous state as well as its action at the last 
step. An occupied E-taxi will have its location and battery level updated in accordance 
to the destination and traveled distance or the location of the charging station. An 
idle E-taxi neither serving an order request nor charging at a station takes an action 
based on the recommended decision. Subsequently, its location will be updated and 
its remaining battery level will be deducted accordingly. 

Definition 5. A charging station ck locates at a road junction and consists of several 
charging piles to provide recharging services. 

If an E-taxi ej decides to recharge at a station ck, it will submit a recharging request 
by sending its remaining battery level bj to ck. The E-taxi leaves ck after its battery 
level is at or above 80% of full capacity. If all charging piles in ck are occupied by E- 
taxis, newcomers must queue up and wait for available spots. Each charging station 
concurrently updates the minimum waiting time according to the received appoint-
ments to the control center. 

8 W. TU ET AL.



Essentially, we focus on the design and modeling of a centrally operated E-taxi fleet 
in which orders are collected and dispatched via a central controller. E-taxis are coor-
dinated by the central controller and they receive instructions about the next recom-
mended actions including picking up and serving a passenger order, repositioning to 
another location, going to a charging station for recharging, and staying in place for 
potential orders. The central operator determines the action of each E-taxi based on 
the optimized policy learnt from the interactions of E-taxis and the dynamic demands 
for travel and charging service. The detailed learning approach is formulated in the 
next sections. 

3.3. Markov decision process formulation 

In this section, the decision-making process of our proposed system is formulated. We 
adopt an Markov decision process (MDP) to represent the interactions among E-taxis, 
travel demands and charging stations. An MDP models the decision process of intelli-
gent agents for serialized decision optimization. The goal of an MDP is to find the 
optimal actions that maximize the expected long-term gains, often called rewards in 
the context of RL, of the agent taking the actions. In general, an MDP usually includes 
the following components: a state space S ¼ fsg that encompasses all states (condi-
tions) of the agents, an action space A ¼ fag that contains the actions for the agents 
to take, a state transition probability matrix T ¼ Pð�js, aÞ to depict the transitions 
among states, and a reward function R(s, a) characterizing the rewards that agents 
receive for their interactions with the environment. Upon the execution of an action, 
the state of an agent changes according to the transition probability given its current 
state and the action taken and the agent receives a reward from the environment. 
The objective then is to maximize the long-term cumulative reward over the whole 
process with a certain length or until a terminal state is reached. The MDP designed 
in this study mathematically formulates the hypothesized E-taxi service with each 
element described as follow. 

State s: A state for an E-taxi is defined as s ¼ flt , bt , otg, where lt and bt denote 
location and remaining battery level at time step t, respectively, and ot is the destin-
ation location if this E-taxi is serving an order. 

Action a: The action set of an E-taxi contains four actions to choose from. The first 
is to serve an order by picking up and delivering the passenger (Serve). Another 
option is to go to a charging station and undergo recharging (Charge). The next action 
permits the E-taxi to cruise to a new location unoccupied (Cruise) and the final option 
is to stay in place and wait for a dispatched order (Wait). 

As shown in Figure 2, at time t, E-taxi ej at location lt with remaining battery bt 

chooses one of the available actions: (1) Picking-up passengers (Serve): if an order oi is 
assigned to ej, ej can pick up the passenger and drive to the destination to fulfill the 
demand. (2) Charging (Charge): ej drives to a charging station to recharge the battery. 
(3) Cruising (Cruise): ej repositions without a passenger to the next location ltþ1: (4) 
Waiting at the current location (Wait): ej stays in place waiting for the next order 
assignment. The energy consumed by the E-taxi for its action can be divided into the 
energy consumption for its displacement and the auxiliary loading energy 

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 9



consumption. It is related to driving speed v, distance d and duration T and formu-
lated as follows:

E ¼ bða1v2 þ a2v þ a3Þ � d þ
lT
60

(1)  

The aggressiveness parameter b captures the impact of driving behavior. 
Aggressive driving behaviors will significantly increase the rate of energy consumption 
and thus decrease the driving range, while mild driving behaviors can reduce energy 
consumption. Following Tseng et al. (2019), we define three types of driving behaviors: 
(1) aggressive behavior (b ¼ 1:2); (2) normal behavior (b ¼ 1:0); and (3) mild behavior 
(b ¼ 0:8). The auxiliary load l is highly related to the temperature and it is set to 
1.5 kW in this study based on the historical records of temperature. 

Reward r: The reward function determines the optimization goal of the model, 
which learns to obtain greater rewards through a trial-and-error process. According to 
the revenue and cost of the E-taxi operation, we set the reward function as the 
demand-adjusted net income of the taxi given an action. As shown in Table 1, each 
action has a specifically designed reward function to reflect the potential benefit and 
cost of taking the action, where rod is the revenue for serving the order, E is the 
energy consumption of the action calculated using (1), Pelec is the unit cost of the con-
sumed electricity or equivalent charging fee. STd is an adjusting parameter that reflects 
the spatiotemporal patterns at the potential destination after the chosen action identi-
fied from massive taxi trajectories, which will be elaborated on in Section 4. The 
adjusting parameter reflects the spatiotemporal characteristics of the demand for taxis 

Figure 2. Actions of an E-taxi.
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which are leveraged to enhance the effectiveness of the system recommendations. 
Here, we assume that Cruise and Wait action would not incur extra monetary cost (e.g. 
tolling or parking) beyond the consumption of energy in the simulated urban 
environments. 

3.4. Recommendations for E-taxis 

An E-taxi will make decisions sequentially over a period of time and obtain a series of 
rewards, which can be expressed as the reward sequence ½rt , rtþ1, rtþ2, � � � , rT �: We 
adopt a cumulative discounted reward function, Rt , to estimate the long-term rev-
enue of an E-taxi, as shown in Equation (2) below, which sums up the weighted future 
rewards of an E-taxi’s sequential decisions over the horizon:

Rt ¼
XT−t

k¼0

kkrtþk (2) 

where 0 < k � 1 is the discount factor that determines the degree to which the MDP 
looks into the future: a reward received after k time steps is only worth kk times of 
the immediate reward.

Formally, this E-taxi recommendation problem can be defined as follows: given an 
E-taxi in state s with action set A, find and recommend the optimal action to maximize 
its future reward Rt: In this study, the DRL framework is incorporated with taxi trajec-
tory mining to improve the long-term rewards of E-taxis and the overall efficiency of 
the E-taxi system.

4. Deep reinforcement learning based real-time recommendation

We develop a DRL model with ST-DDQN to optimize the sequential decisions of E-taxis 
with diverse actions. The ST-DDQN module receives real-time order requests from pas-
sengers and recommends the optimal action to E-taxi drivers. Here, we assume full 
cooperations and coordination by the E-taxi drivers. This framework is composed of an 
offline processing component, an online learning component, and an online recom-
mendation component, as illustrated in Figure 3. In the offline processing component, 
historical taxi trip records are processed to extract spatiotemporal patterns of urban 
taxi travel demand. The cruising strategy and the recharging strategy are then devel-
oped partly based on the spatiotemporal characteristics of the demand. The ST-DDQN 
model, enhanced by a double deep Q-network, is developed and implemented. In 
addition, we build an experience filter to store different types of training samples, 
which makes the training process more reliable. Finally, the real-time recommendation 
system is set up to provide online recommendations after training.

Table 1. Reward function.
Action a Reward function r

Serve rod � STd
Charge −E � Pelec � ð1 − STdÞ
Cruise −E � Pelec=STd
Wait −E � Pelec=STd
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4.1. Strategies for taxi actions based on spatiotemporal demand dynamics

As mentioned above, the spatiotemporal patterns of the dynamic demands for taxi 
trips are leveraged to improve the decision-making process for the recommendation 
system. In this section, the data mining process to extract the spatiotemporal patterns 
of taxi travel demand and the subsequent strategies for relevant actions are elabo-
rated on.

4.1.1. Extracting spatiotemporal travel patterns
The urban taxi travel demand is characterized with large spatial and temporal varia-
tions. It is essential to understand the spatiotemporal patterns of taxi demand before 
sending recommendations for E-taxis. Here, we utilize a neural network to learn the 
distribution of travel demand. Distribution patterns with strong spatiotemporal varia-
bilities are obtained and referred to as the spatiotemporal demand factor ST hereafter, 
which is also mentioned in Section 3 and Table 1. Figure 4 shows the workflow of the 
proposed model in which a neural network (NN) module is built for travel demand 
estimation at the spatiotemporal unit level. The input of the NN module is a 3-D vec-
tor denoting the time, the location, and the activity potentials reflected by the num-
ber of nearby POIs. The output is then the predicted number of travel requests at 
different times and locations. Finally, the scaled spatiotemporal demand factor ST is 

Figure 3. The workflow of the DRL-based real-time recommendation for E-taxi.

Figure 4. The neural network architecture for learning the distribution pattern of travel demand.

12 W. TU ET AL.



obtained based on the dynamic demand prediction. The NN module consists of a 
three-layer multilayer perceptron (MLP) with different numbers of neurons at different 
layers. The hyperparameters are cross-validated, and those with the best performance 
are adopted. The numbers of layers and neurons in the three layers with the best per-
formance are 64, 128, and 64 respectively. The NN model is trained with stochastic 
gradient descent and the mean absolute error (MAE) as loss function, as shown in 
Equation (3), where yi and yp

i are the true and predicted numbers of requests respect-
ively and n is the number of spatiotemporal units. Based on the trained model, the ST 
factor at each time and location is obtained by normalizing the travel demand 
prediction.

MAE ¼
1
n

Xn

i¼1

yi − yp
i

�
�

�
� (3) 

Travel demand is highly space- and time-varying. The spatiotemporal demand fac-
tor ST describes the spatiotemporal variations in the distribution of travel demand for 
taxi. Based on historical taxi trip records, we extract the spatiotemporal patterns of 
travel demand and develop the NN module to estimate the dynamic demand and the 
ST factor to reflect the distribution of demand. The ST factor is normalized between 
0.1 and 1 to indicate the relative amount of order requests made by customers at a 
specific location and time. It essentially describes the spatiotemporal variations in the 
distribution of travel demand. In our study, the value of ST indicates the potential 
number of upcoming orders at a specific location and time. The utility of the spatio-
temporal demand factor is as mentioned in Section 3.3 and Table 1. If the E-taxi 
selects action Serve to pick up a passenger and serve the order, the reward for this 
decision is the revenue of the order rod weighted by the spatiotemporal demand fac-
tor at the destination STd: When the E-taxi takes the action to serve an order that 
would end in an area with little travel demand, the reward for this choice will be low 
because of the low spatiotemporal demand factor and the small implied potential to 
pick up new orders at that location. The reward for action Charge is based on the cost 
of electricity Celec. The spatiotemporal demand factor of choosing a charging station at 
location d, 1 − STd , associates a charging reward with the distribution of travel demand 
around that station. The reward for choosing a station with high travel demand is 
greater than that for choosing a station with low demand. The rewards obtained by 
the actions Cruise and Wait are also negatively correlated with the cost of electricity 
Celec. Moreover, if the destination has a low travel demand, i.e. low STd, the E-taxi will 
obtain a low reward after the actions. Therefore, the strategies for destination choice 
for both Charge and Cruise are developed based on the estimated spatiotemporal 
demand factor.

4.1.2. Strategy for action charge
Compared to the refueling for the ICE vehicles, E-taxis take a longer time to recharge, 
which decreases taxis’ service hour and thus total revenue. Efficient recharging recom-
mendations will improve the efficiency of E-taxi operations and increase the revenue 
in the following time periods. Generally, a charging station with little travel demand 
around may have a short queue for recharging. But charging there may also induce a 
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long cruising journey without order assignment afterwards. Therefore, we use the spa-
tiotemporal demand factor to find the best charging station, cr, as illustrated in 
Equation (4), rather than simply minimizing the sum of the waiting time to recharge, 
Td1, and the travel time to the station, Td2: Here, STd is the estimated normalized 
travel demand at the charging station as the destination of the recharging trip. This 
strategy not only reduces the total time cost for recharging but also considers the 
ease of being assigned new orders after.

cr ¼ argmax
d

Td1 þ Td2

STd

� �

(4) 

4.1.3. Strategy for action cruise
When the E-taxi decides to search for passengers on the road, the recommendation 
system will recommend a destination according to the current location, the remaining 
battery level, and the potential demand around the destination. Generally, the more 
demand at the destination of cruising, the higher the chance of being assigned new 
orders and thus higher revenue. Hence, the cruising strategy directs the E-taxis to 
locations with high levels of potential demand. Using the demand factor STd as the 
selection probability, the cruising strategy will recommend the location ld with greater 
potential travel demand, as shown in Equation (5). Note that route planning is not a 
part of this study, and we assume that all E-taxis will choose the shortest paths to the 
recommended destination.

PrðldÞ ¼ STd (5) 

4.2. Spatiotemporal double deep Q-learning

DRL trains agents to learn the best decision by interacting with the environment. 
Here, we incorporate the spatiotemporal patterns of urban taxi travels into the RL 
framework to provide effective recommendations for E-taxis, as displayed in Figure 3.

4.2.1. Learning algorithm
Using the historical taxi trip records, the collected experience of the state-action pair 
is learned by the ST-DDQN model to update the value function Qðs, aÞ ¼ E½Rjs; a, p�, as 
shown in Equation (6). Policy p guides which actions should be taken given the states. 
The expected return R of one policy is determined by the value function. Finding the 
optimal action by maxatþ1 Q stþ1, atþ1ð Þ, the action-value function Q(s, a) can be esti-
mated with tabular Q-learning:

Qðs, aÞ ¼ Qðst , atÞ þ aðrt þ k max
atþ1

Q stþ1, atþ1ð Þ − Qðst , atÞÞ (6) 

Here, a is the learning rate controlling the learning speed. The discount rate k 

determines the present value of rewards received in the future. The tabular Q-learning 
algorithm uses a look-up table to store the Q function values, which is not suitable for 
cases with large or continuous states and action spaces. To better capture the com-
plex characteristics of E-taxi operations, we use a deep neural network Qðs, a; hÞ to 
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approximate the Q function, which is called the deep Q-learning network (DQN), 
where h represents the parameters of the neural network (Mnih et al. 2015).

Since the spatiotemporal characteristics of the taxi demand are incorporated into 
the reward function (as in Table 1), the value function can better capture the dynam-
ics of demand at detailed temporal and spatial scales, which are potentially of great 
value to the optimization of E-taxis’ decision-making processes. As such, the learning 
processes of agents in the RL model are supported by rich information from the mas-
sive historical taxi trip data (Table 2).

To improve the stability of the training process, we use double-DQN (DDQN) 
(Hasselt et al. 2016), where DQN1 with parameters h1 is used to select the optimal 
action, and the target neural network DQN2 with parameters h2 evaluates the value of 
the chosen action. By updating the parameters of DQN2 periodically, we improve 
action value evaluation and the action selection. The neural network convergence tar-
get Y is kept stable for a certain period. Therefore, the target Y is modified as follows:

YDDQN ¼ rt þ kQðstþ1, arg max
atþ1

Qðstþ1, atþ1; h1Þ; h2Þ (7) 

Using the minibatch update strategy, the DRL-based E-taxi operation optimization 
problem is solved through back propagation with the following loss function:

LiðhiÞ ¼ Eðs, aÞ�qð�Þ ðY
DDQN
i − Qðs, a; hiÞÞ

2
h i

(8) 

4.2.2. Experience filter
The ST-DDQN model updates its strategy by interacting with the environment, as 
shown in Figure 5. Here, the E-taxi driving environment is built by simulating city-scale 
E-taxis, passengers, and services at charging stations. As stochastic simulations lack 
real world experience, we use historical taxi trip data to simulate real-world cases for 
training, wherein the E-taxis pick up and deliver passengers, cruise, and recharge at 
the charging stations and obtain the corresponding rewards. The state-action-reward 
pairs are stored in memory for the training process. The E-taxi agent periodically takes 
a minibatch of samples from the experience pool to update the deep neural network. 
This strategy is called experience replay and has been widely used in reinforcement 
learning models.

However, urban traffic varies significantly across space and time. Previous studies 
usually store all the state-action-reward training samples in an experience pool (Wang 
et al. 2020, Verma et al. 2017). Over the episodes, the pool will be occupied by the 
most frequent state-action-reward pair. The E-taxi agent will repeatedly learn how to 
estimate the returns of these frequent state-action pairs while ignoring other infre-
quent pairs. This can cause the model to make incorrect decisions under certain cir-
cumstances. Here, we solve this imbalance problem by using the experience filter for 

Table 2. Examples of Shenzhen taxi trajectory record.
Num Pick-up time Drop-off time Pick-up location Drop-off location Trip distance (km) Fare (CNY)

1 7:00 7:06 5724 4262 2.69 10.55
2 8:10 8:13 803 1614 1.45 6.8
3 17:15 17:20 2149 3726 2.25 9.73
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different state-action pairs. As shown in Figure 6, the training samples for different 
actions are stored in separate experience pools. Different numbers of samples are 
selected based on a roulette strategy and pre-defined proportions of different samples 
are obtained. As such, it can prevent unbalanced sample production from interfering 
with the training process, thus improving the capability of the network to predict the 
reward accurately and representatively.

5. Experiment and results

The recommendation system prototype is developed to optimize the E-taxi operations 
in Shenzhen, China, and evaluated for its performance. We first set-up the experiments 
following the real-world E-taxi operations. We then examine the performance of 
ST-DDQN by comparing it with selected baseline methods. Finally, we evaluate the 
sensitivities of ST-DDQN by changing several parameters to simulate different E-taxi 
operation scenarios.

5.1. Experiment setting

We used taxi trajectory data for Shenzhen, China to conduct the experiment, which 
were collected between March 1st and June 30th, 2016. The dataset includes the time, 
location, and occupied status of the 21,642 fuel-based taxis. We removed anomalous 
taxi trips, e.g. trips with zero travel time or travel distance, missing pick-up/drop-off 
locations, or destinations outside of Shenzhen. The dataset is split into a training set 
of 16,565,112 records generated between March 1st and May 31st, 2016 and a test set 

Figure 5. The ST-DDQN structure.
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of 1,167,078 records in the first week of June 2016. The road network of Shenzhen 
was crawled from OpenStreetMap and all pick-up and drop-off locations are adjusted 
to the nearest road junctions. The information of 97 charging stations was collected 
from the Shenzhen Transport Bureau. The charging pile counts and the rate of charg-
ing piles were also collected. 6000 BYD E6 E-taxis, a currently popular model, were 
designated as our agents. The battery capacity of BYD E6 is 60 kWh and its driving 
range is around 294 km. The charging rate is set to 40 kW. According to the current 
policy, the electricity price is 0.8 CNY/kWh.

The performance of the ST-DDQN is examined in four aspects: the ratio of served 
demand and evaluation metrics for charging, cruising, and waiting. To evaluate the 
performance, we compared the results from our model with those of the following 
four baseline scenarios, among which the first three are heuristics selected as the con-
ventional baseline methods and the vanilla DDQN without spatiotemporal knowledge 
is selected as the state-of-the-art DRL baseline method. Initially, standard DQN was 
also implemented but it failed to converge, possibly due to the overestimation of 
state-action values and the lack of experience filter, making it vulnerable to the dis-
turbance of unbalanced samples.

1. DistFirst: The E-taxi goes to the nearest charging station to recharge when the 
remaining battery power is below 20%.

2. TimeFirst: The E-taxi goes to the charging station with the shortest waiting time 
to recharge when its remaining battery power is below 20%.

Figure 6. Experience filter structure.
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3. ICE: Test results are also compared against those from scenarios with Internal 
combustion engine (ICE) taxis under identical conditions. ICE-based taxis refuel 
faster and have more time to serve passenger demands.

4. DDQN: Unlike the previous baseline methods, which are predefined heuristics, the 
DDQN method leverages reinforcement learning to adapt and optimize decisions 
based on the underlying environment. It employs a dual-network structure, com-
prising a primary network for action selection and a target network for value 
assessment, to overcome issues of action overestimation commonly encountered 
in Q-learning-based algorithms. The standard DDQN model without the strategies 
based on spatiotemporal knowledge from trajectory data is implemented and a 
baseline in this study.

5.2. Spatiotemporal patterns of taxi trips

Using the historic taxi trajectories in Shenzhen, spatiotemporal patterns of taxi travel 
demand are identified. We use the datasets collected from March to May and the first 
week of June as the training and the testing subsets respectively. Cross-validation with 
different hyperparameters was conducted to obtain the best performance of the NN 
model. The time window of the prediction is set to 15 minutes, in accordance with the 
average duration of taxi trips.

We compared the results of the NN model with the historic mean value prediction. 
The mean absolute error (MAE) and the mean relative error (MRE) between the esti-
mated number of taxi orders and the real number of orders were calculated. Table 3
reports the results of the NN model and the historic mean method. It demonstrates 
that the NN model predicts future taxi order with an MAE of 0.52 and an MRE of 0.29, 
indicating large improvements over the simple historic mean method with an MAE of 
1.98 and an MRE of 0.54. The NN model achieves an approximately 74% improvement 
in MAE and a 47% improvement in MRE. Therefore, this module provides a good pre-
diction of city-wide taxi demand.

Figure 7 illustrates the temporally-varying estimated taxi demand. It shows that the 
NN method can capture the dynamics of the city-scale taxi demand reasonably well. 
From the spatial perspective, we normalize the predicted taxi orders at certain times 
of day and locations, as shown in Figure 8. It demonstrates that taxi orders tend to 
concentrate around the city center and transportation hubs such as the high-speed 
railway station and the airport.

5.3. The performance of ST-DDQN

By coupling the spatiotemporal information on taxi travel demand, the ST-DDQN mod-
ule was trained to obtain the optimal operation policy for each E-taxi. Figure 9 shows 

Table 3. Performance of ST-NN and the baseline method for spatio
temporal knowledge mining.
Method MAE MRE

ST-NN 0.52 0.29
Historic Mean 1.98 0.54
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the training processes of ST-DDQN both with and without an experience filter. The 
results demonstrate that the filtering strategy with pre-defined proportions of samples 
significantly improves the ST-DDQN performance. With the experience filter, the total 
reward is gradually improved and finally converges at around 110 thousand after 91 
episodes. While the model without experience filter converges at around 45 thousand.

In addition, we evaluated the performance of the trained ST-DDQN with the trip 
data in the first week of June 2016. Table 4 describes the detailed ST-DDQN results, 
including the percentage of served orders, various indicators for passenger delivery, 
charging, cruising, and waiting. These results are compared against those obtained 

Figure 7. The prediction of travel demand by NN model and Historical mean method.

Figure 8. Spatial distribution of the ST factor at 09:00.
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from the baseline methods. The findings reveal remarkable improvements achieved 
with the implementation of the ST-DDQN module. It shows that, with the ST-DDQN 
module, an E-taxi can earn 894.98 CNY (around 130 US dollar) per day on average 
with 8.79 h of service, covering 267.10 km of distance traveled. Because of the inherent 
spatiotemporal dynamic characteristics of taxi demand, E-taxis averagely spend 10.50 h 
to travel for 366.65 km to search for passengers. Meanwhile, E-taxis spend 3.54 h to 
recharge with an average waiting time of 0.67 h. These results indicate significant 
improvements over the baseline scenarios with larger revenue, longer service distan-
ces, and short waiting time for charging on par with the time minimization strategy. 
While the two minimization strategies, by design, outperform in either the distance or 
the time metric, overall, they fall behind the ST-DDQN model. The DistFirst method 
would induce significant congestions at popular charging stations, resulting in long 
waiting time for recharging service and a low level of trip completion rate. The 
TimeFirst method also results in fewer trips served and therefore less revenue. The ICE 
scenario is also compared against the proposed model and, despite its great advan-
tage in refueling speed, it is still outmatched by the ST-DDQN model both in terms of 
revenue and cruising efficiency. The results of the baseline DDQN models report a 
52.83% trip coverage and a net revenue of 461.89 CNY, albeit with longer cruising, 
charging, and waiting times. The results collectively emphasize the superior perform-
ance of the ST-DDQN approach, particularly with the spatiotemporal patterns of 
potential demand accounted for, both in terms of revenue generation and operational 

Figure 9. The improvement of ST-DDQN model with experience filtering.

Table 4. The performance of the ST-DDQN and four baseline methods.
Passenger delivery Charging Cruising Waiting

Percent of taxi  
trips served

Net  
revenue  

(CNY)
Distance  

(km)
Time  

(hour)
Time  

(hour)

Waiting  
time  

(hour)
Distance  

(km)
Time  

(hour)
Time  

(hour)

ST-DDQN 97.57% 894.98 267.10 8.79 3.54 0.67 366.65 10.50 0.50
DistFirst 44.30% 385.52 113.63 3.74 1.00 17.13 69.49 2.35 –
TimeFirst 91.36% 846.58 255.19 8.42 3.39 0.39 340.11 11.80 –
ICE 95.91% 880.07 262.59 8.78 – – 450.85 15.22 –
DDQN 52.83% 461.89 143.74 4.81 3.40 0.43 436.26 14.56 0.80
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efficiency, underscoring its suitability for optimizing connected E-taxi charging 
strategies.

Figure 10 further illustrates the details of the results. It demonstrates that more 
than 90 percent of E-taxis have a daily net revenue of over 520 CNY (around 75 US 
dollar), while some E-taxis can even earn more than 1500 CNY (around 215 US dollar) 
per day. The daily occupied distance distributes similarly. All E-taxis cruise more than 
120 km per day to search for order requests. Because of the limited driving range, 
E-taxis have to recharge two or three times per day. Figure 10(c) displays the distribu-
tion of the recharging time and the waiting time at charging stations. It shows the 
E-taxis wait at the stations for between 0.1 and 1.6 h due to the scarcity of charging 
stations. To reduce empty cruising on the road, E-taxis sometimes wait in place for the 
next orders. The waiting time varies from 0 to 2.5 h as Figure 10(c) displays.

5.4. Spatial distribution of E-taxi services

Figure 11 illustrates the spatial distribution of the ratio of unserved orders and the 
waiting time at charging stations. Because of the effective assignment by the ST- 
DDQN model, only about 2.43% of the orders are unmet. The percentages of unmet 
demand in most areas are well below 1%. Regardless, relatively higher amounts of 
unmet demands appear at the east and the north of the city. With the help of spatio-
temporal patterns of demand, E-taxis effectively fulfill the taxi demand in urban areas. 
Figure 11(b) displays the average waiting time for recharging at charging stations. It 
suggests E-taxis wait, on average, for less than 15 min at all but 5 stations. These 
results imply that the ST-DDQN framework tends to recommend stations with higher 
travel demand to reduce the waiting time before and the cruising distances of E-taxis 
after recharging.

5.5. Sensitivity analysis

To further investigate the proposed framework in regard with its response to the vary-
ing hyperparameters, sensitivity analyses are conducted to assess the influence of sev-
eral selected factors on the performance of the system.

Figure 10. Distribution of the ST-DDQN E-taxis’: (a)revenue; (b) occupied and cruising distances; (c) 
duration of charging, waiting for charging and waiting in place.
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5.5.1. Impact of battery capacity
We first evaluated the effect of battery capacity by varying it between 40 kWh 
and 80 kWh. Figure 12(a) shows the changes in average daily net revenue and 
the percentage of unmet travel demand under different battery specifications. 
With increasing battery capacity, E-taxis supported by the ST-DDQN model 
improve their average daily revenue from 877 CNY (around 127 US dollar) to 897 
CNY (around 130 US dollar). In terms of the unrealized demand, the ratio 
decreases from to 4.64% to 2.39%. Combined with results in Table 4, it indicates 
that the increase of battery capacity from 60 kWh to 80 kWh only improves the E- 
taxi service marginally and electric vehicles with the capacity in the contemporary 
time, given effective dispatching and management, are adequate for the taxi 
service.

Figure 11. Spatial distribution of (a) the ratio of unmet demands; (b) waiting time at charging sta
tion (in minutes).
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5.5.2. Impact of charging speed
We hypothesized three types of charging infrastructures: low-speed charging (20 kW), 
high-speed charging (40 kW), and hyper-speed charging (120 kW) to test the sensitiv-
ity of the E-taxi system to charging speed, with results shown in Figure 12(b). 
Generally, faster charging requires less time to complete, thus permitting E-taxis 
more time on the road. When the charging speed changes from 20 kW to 40 kW, the 
average daily net revenue is significantly improved from 862 CNY (around 124 US 
dollar) to 895 CNY (around 129 US dollar). While the unmet taxi demand decreases 
from 6.3% to 2.4%. When the charging speed further increases to 120 kW, the E-taxis 
will obtain the highest average daily net revenue of 900 CNY (around 130 US dollar). 
But the benefit of the increased revenue tends to vanish when the battery capacity 
and charging speed are further improved as the taxi demand for the whole city is 
finite.

5.5.3. Impact of the E-taxi fleet size
The number of E-taxis also affects the performance of the system. Figure 12(c) shows 
the daily net revenue and the percentage of unmet taxi demand with varying E-taxi 
fleet sizes. As the number of E-taxis increases from 1000 to 7000, the taxi service on 
the road is significantly improved. The total ratio of unmet demand dropped from 
63% to 0.4%. However, the average revenue also decreases from 1662 CNY (around 
240 US dollar) to 641 CNY (around 92 US dollar), largely due to more intense 
competition.

6. Conclusions

An effective and efficient real-time recommendation system is proposed for operating 
a fleet of centrally managed E-taxis, which accounts for the diverse actions including 
picking up passengers and serving orders, cruising on the road, waiting in place, and 
recharging at stations. Spatiotemporal patterns of taxi demand are learned from the 
real-world trip data of taxis by the spatiotemporal NN method. The ST-DDQN 

Figure 12. The effect of (a) battery capacity; (b) charging speed; (c) taxi number on daily net rev
enue and the ratio of unmet taxi demands.
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framework is established by coupling the NN model and the double-Q DRL. An online 
prototype of the recommendation system is developed to implement efficient real- 
time decision recommendation. An experiment in Shenzhen, China demonstrates the 
effectiveness and efficiency of the proposed system. The average daily net revenue of 
E-taxis is significantly higher than those with the baseline methods and in the ICE 
scenario. The proposed method can not only increase the daily net revenue in the 
short term but also improve the viability of E-taxis in the long run. This method is suit-
able for centrally controlled self-driving electric vehicles and can also provide decision 
support for E-taxi drivers. On the other hand, by integrating a travel information sys-
tem, real-time traffic information may be considered to further improve the operation 
of E-taxi fleets. This study also contributes to the literature on spatiotemporal planning 
regarding the performance optimization of urban transportation systems with 
reinforcement learning and geospatial big data analytics (Xu et al. 2023).

There are also a few directions for future research. First, the aggressiveness of driv-
ers is set uniformly across the driver population in the present study. To account for 
the heterogeneity of driver behavior, the parameter can be drawn from a pre-defined 
or empirically fitted probability distribution. Also, largely due to data constraints, traffic 
conditions are considered exogenous and not affected by the changing actions of the 
agents. A more comprehensive modeling of the traffic dynamics based on external 
data and/or some reasonable assumptions could yield more realistic outcomes. 
Additional model specifications and scenarios could be tested including alternative 
reward designs to put more emphasis on levels of service for passengers and future 
scenarios with more advanced battery technologies. White-box models with great 
interpretability and recent development in expandable and interpretable AI (Fuhrman 
et al. 2022) also provide viable options for the optimization of vehicle fleets and could 
be applied and compared with the RL framework. Finally, agents in the present study 
are assumed to be completely rational and their behaviors are modeled mostly inde-
pendently with full cooperation to the central operator. Occasionally impulsive or sub-
optimal actions by the drivers can be included and competitions among agents could 
be reflected via multi-agent reinforcement learning (Liu et al. 2022).
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